USC Airport Pavement Research Program

Greg White
0400 218 048 | gwhite2@usc.edu.au
Introduction

• What is the APRP?
• Why is there an APRP?
• Where is it up to?
• What has it done?
• How has this helped?
• What is the cost-benefit?
• What is the future?
What is the APRP?

• University-based research program
• Funded by the airport industry
• Airport pavements and associated topics
• Practice and technology upkeep
• Mandatory focus
 • Applied research
 • Implementation into practical
 • Education of the next generation
 • Represent the industry
What is the APRP?

• Director – Greg White
• Post-doctoral researcher – Ali Jamshidi
• Collaborators
• Students
 • Four PhD researchers
 • Eight Master of Science/Engineering researchers
 • Range of final year civil engineering undergraduates
• Industry partners
Why is there an APRP?

• Up to the 1990s
 – Department of Housing & Construction
 – Department of Civil Aviation
 – Federal Airports Corporation

• Since privatisation
 – No structured R&D
 – No centralised practice upkeep

• Everything else has changed
 – Aircraft wheel loads and tyre pressures
 – Bitumen and other materials
 – Performance expectations and legalities
Why is there an APRP?

• Who does the Research and Development?
 • Consultants?
 – Not paid to research
 – No return on investment
 • Government?
 – The ‘S’ in CASA is for ‘SAFETY’
 – Outside of their brief
 • Construction industry?
 – Conduct significant R&D
 – Only where there is commercial advantage
Where is it up to?

• Greg White started in 2016
• Official launch in 2017
• Sunshine Coast, Perth and Defence
• Others wanted evidence of success
• Others wanted a return on investment
• First five years of funding now ending
• Defence extension is imminent
• And we now have a track record and an RoI
What has it done?

• Representation
 • ICAO Airport Pavement Expert Group
 • ICAO Friction Task Force
 • Australian Standards committees

• Australian Airports Associations
 • Series of webinars
 • Pavement Working Group
 • MOS 139 review industry group
 • P&L Forums and Workshops
 • Practice Notes

• Students
 • Sean Jamieson – Stone mastic for runways
 • Tom Weir – Foamed bitumen characterisation
 • Roberto Espinosa – Marginal material use
 • Demi van den Heuvel – Sustainability (CPEE)
 • 36 USC final year engineering students

• Publicly available research outputs

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>Journal articles</th>
<th>Conference papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>2017</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>2018</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>2019</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>2020</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
What has it done?

- Dubbo airport
- Emerald airport
- Sunshine Coast airport
- Brisbane airport
- Whitsunday Coast airport
- Shellharbour airport
- Rockhampton airport
- Defence airfields
- Brisbane City Council
- Sunshine Coast Council
- Perth airport
- Western Sydney airport

- AAA
- Downer
- Boral
- Colas
- Fulton Hogan
- BMD
- LendLease
- CASA
- ATSB
- AfPA
- AustStab
- ARRB TR
- ICAO
- FAA
How has it helped?

• Performance-related asphalt specification
 • Dubbo airport
 • Whitsunday Coast airport
 • Rockhampton airport
 • Weipa airport
 • Cairns airport
 • Norfolk Island airport
 • Perth airport (taxiways)
 • Darwin airport (aprons extension)
 • Emerald airport
 • Shellharbour airport
 • Groote Eylandt airport
 • Cessnock airport (runway)

• Warranted protection against major failures
• Balance of risk with industry
• Practical and achievable tolerances
• Joint heaters
• Recycled asphalt
• Proprietary products
• Better surface bond
• National consistence
• Modern ‘best practice’ approach
How has it helped?
How has it helped?

• Sprayed sealing specification
 • Dubbo airport (cross runway)
 • Dubbo airport (taxiways)
 • Mudgee airport
 • Orange airport
 • Narrandera airport
 • Three ALAs near Roma
 • Archerfield airport
 • Parkes airport (runway)
 • Parkes airport (taxiway and apron)
 • Merimbula airport
 • Cessnock airport (taxiways)

• Collaborative with industry
• Reflects a ‘best practice’ approach
• Balance of performance and efficiency
• Commentary
• Standard design catalogue
• National consistence
How has it helped?
How has it helped?

• Ungrooved stone mastic asphalt for runways
 • Emerald airport
 • Shellharbour airport
 • Where next?

• Draft specification development
• Laboratory trials (7 mixes, four contractors)
• Field trial (RAAF Amberley taxiway)
• Pilot project at Emerald airport
• Costs ±2% but expected to last 4-6 years longer
How has it helped?

Surface texture

Runway Friction
How has it helped?

• Recycled asphalt for airports
 • Low risk recycled asphalt (RAP) sources
 • Better grading than new aggregate
 • Significant reduction in new aggregate
 • Small reduction in bituminous binder
 • No reduction in surface performance
 • Greatest sustainability benefit in asphalt surfacing
 • Around 5,000 tonnes of material savings to date
How has it helped?

<table>
<thead>
<tr>
<th>Asphalt Property</th>
<th>Mixture P</th>
<th>Mixture D</th>
<th>Mixture R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No RAP</td>
<td>With RAP</td>
<td>No RAP</td>
</tr>
<tr>
<td>Marshall Stability (kN)</td>
<td>19.1</td>
<td>16.5</td>
<td>13.6</td>
</tr>
<tr>
<td>Marshall Flow (mm)</td>
<td>3.2</td>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Resilient Modulus (MPa)</td>
<td>4,062</td>
<td>5,018</td>
<td>5,002</td>
</tr>
<tr>
<td></td>
<td>4,899</td>
<td>5,134</td>
<td>5,089</td>
</tr>
<tr>
<td></td>
<td>4,350</td>
<td>5,155</td>
<td>5,382</td>
</tr>
<tr>
<td>Fatigue life (cycles)</td>
<td>>1,000,000</td>
<td>>1,000,000</td>
<td>>1,000,000</td>
</tr>
<tr>
<td></td>
<td>>1,000,000</td>
<td>>1,000,000</td>
<td>>1,000,000</td>
</tr>
<tr>
<td></td>
<td>>1,000,000</td>
<td>>1,000,000</td>
<td>>1,000,000</td>
</tr>
<tr>
<td>Wheel track rutting (mm)</td>
<td>1.9</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Tensile Strength Ratio (%)</td>
<td>97</td>
<td>96</td>
<td>97</td>
</tr>
</tbody>
</table>
How has it helped?

• Non-destructive testing
 • Laser scanner for sand patch texture – efficient for large tasks
 • Gauges for density cores – around 2,000 cores avoided to date
 • FWD for PCN – saving airports from erroneous strength rating
How has it helped?

Laser meter

FWD for PCN

5% ile value
PCN = 12

Gauge density
How has it helped?

• Better concrete pavements
 • Sahar Deilami – reflecting cracking when overlaid
 • Sean Jamieson – joints and their load transfer efficiency
 • Western Sydney Airport – post tensioned concrete aprons
 • Brisbane airport and BMD – alternates to flexural beams
 • Undergraduate students – recycled glass and plastic for sand
What is the cost-benefit?

- High return on investment
- Independent assessment by Cadre Capital Partners
- Based on
 - 40-year pavement lifecycle
 - 40 years of investment (cost)
 - But only 5 years of outputs (benefits)
- Monetised value of
 - Reduce cost to build/maintain
 - Longer life
- Intentionally conservative assumptions
- Whole of life cost with and without the USC APRP
- Average return of $19.50 (per $ invested)
What is the cost-benefit?

Available benefit per $ spent on APRP

- All of industry
- Capital city airport
- Major regional airport
- All civil airports
- Department of Defence

- $0
- $5
- $10
- $15
- $20
- $25
What is the future?

• Five year extension with Defence support
• Seek support from other major airports
 • Five years of track record
 • Significant outcomes
 • Demonstrated return on investment
• Construction of a specialist laboratory
• More students, More research, More outcomes, More benefit
What is the future?

• Ongoing research activities
 • Asphalt preservation trials – Defence
 • Microsurfacing for regional airports – specification with AfPA
 • Foamed bitumen for airports – specification with AustStab
 • Accelerated asphalt sample ageing – Ahmed Abouelsaad (PhD)
 • Sustainability in pavements – Defence and a PhD student
 • Evolution of runway friction
 • Proof rollers for crushed rock and thick sand fills – Hudson Anstee
 • Better asphalt joints and density testing
What is the future?

• Many PhD and Masters opportunities
• Available student research projects
 • Asphalt preservation trials
 • Recycled materials in concrete
 • Airport concrete pavement modernization
 • Recycled in airport concrete
 • Asphalt joints and density
 • Evolution of runway friction
 • Performance specification of crushed rock base course
Conclusions

• Airport Pavement Research Program is now four years old
• Filling the gaps left by Government
 – Specification of materials
 – Modernisation of practice
 – Low risk recycled for sustainability
 – Education of a new generation
• Reliant on ongoing funding by industry
• Range of opportunities to get involved
• Improving practice to shape the future
• Provide a return to the industry
QUESTIONS?